Type IIB flux compactifications with $\boldsymbol{h}^{1,1}=\mathbf{0}$

Timm Wrase敢 LENHIGH

July 8 ${ }^{\text {th }}, 2022$

Becker, Gonzalo, Walcher, TW in progress
Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818
Becker, Becker, Walcher 0706.0514
Becker, Becker, Vafa, Walcher hep-th/0611001

Swampland Conjectures

- There are no 4d dS vacua in string theory

Danielsson, Van Riet 1804.01120 Obied, Ooguri, Spodyneiko, Vafa 1806.08362

Swampland Conjectures

- There are no 4d dS vacua in string theory

Danielsson, Van Riet 1804.01120 Obied, Ooguri, Spodyneiko, Vafa 1806.08362

- No 4d Minkowski vacua without massless scalars

Gautason, Van Hemelryck, Van Riet 1810.08518
Andriot, Horer, Marconnet 2204.05327

Swampland Conjectures

- There are no 4d dS vacua in string theory

Danielsson, Van Riet 1804.01120
Obied, Ooguri, Spodyneiko, Vafa 1806.08362

- No 4d Minkowski vacua without massless scalars

Gautason, Van Hemelryck, Van Riet 1810.08518
Andriot, Horer, Marconnet 2204.05327

- There are no (SUSY?) 4d AdS vacua in string theory
D. Lüst, Palti, Vafa 1906.05225

Buratti, Calderon, Mininno, Uranga 2003.09740

Swampland Conjectures

- Have not studied string theory in its fully generic form but usually only in certain regions: large volume, weak coupling, with supersymmetry,
- Try to understand larger parts of the string landscape
- Not easy \Rightarrow incremental steps

Outline

- Review of flux compactifications in type IIA and IIB
- $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua from type IIB with $h^{1,1}=0$
- $4 \mathrm{~d} \mathcal{N}=1$ AdS vacua from type IIB with $h^{1,1}=0$
- Conclusion

Outline

- Review of flux compactifications in type IIA and IIB
- $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua from type IIB with $h^{1,1}=0$
- $4 \mathrm{~d} \mathcal{N}=1$ AdS vacua from type IIB with $h^{1,1}=0$
- Conclusion

Type II Flux Compactifications

Type IIA
All moduli stabilized: $h^{2,1}=0 \quad$ All moduli stabilized: $h^{1,1}=0$

- Type IIA and type IIB on CY_{3} related by mirror symmetry
- Extends to spaces with $h^{2,1}=0$ that are dual to spaces with $h^{1,1}=0$

$$
\begin{array}{ccccc}
& & 1 & \\
& 0 & h^{1,1} & 0 & \\
1 & h^{2,1} & h^{1,2} & 1 \\
0 & h^{1,1} & 0 & \\
& & 1 & &
\end{array}
$$

Type II Flux Compactifications

Type IIA

All moduli stabilized: $h^{2,1}=0 \quad$ All moduli stabilized: $h^{1,1}=0$

- Type IIA and type IIB on CY_{3} related by mirror symmetry
- Extends to spaces with $h^{2,1}=0$ that are dual to spaces with $h^{1,1}=0$
- $h^{1,1}=0$ seems to imply absence of an underlying geometry (which is fine for string theory)
- Actually, string frame volume is fixed by an orbifold to an $O(1)$ value and cannot fluctuate

Type IIB Flux Compactifications

- Flux compactifications with $h^{1,1}=0$ where originally studied in 2006 and 2007

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

Type IIB Flux Compactifications

- Flux compactifications with $h^{1,1}=0$ where originally studied in 2006 and 2007

Becker, Becker, Vafa, Walcher hep-th/0611001

Becker, Becker, Walcher 0706.0514

- Recently revisited in the swampland context
- Given the plethora of recent swampland conjectures a further and closer look is warranted

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818
Becker, Gonzalo, Walcher, TW in progress

Type IIB Flux Compactifications

- Flux compactifications with $h^{1,1}=0$ where originally studied in 2006 and 2007

Becker, Becker, Vafa, Walcher hep-th/0611001

Becker, Becker, Walcher 0706.0514

- The authors were guided by trying to find the dual of a $\frac{T^{6}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}$ type IIA flux compactification with $h^{2,1}=0$

DeWolfe, Giryavets, Kachru, Taylor hep-th/0505160

Type IIB Flux Compactifications

- Flux compactifications with $h^{1,1}=0$ where originally studied in 2006 and 2007

Becker, Becker, Vafa, Walcher hep-th/0611001

Becker, Becker, Walcher 0706.0514

- The authors were guided by trying to find the dual of a $\frac{T^{6}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}$ type IIA flux compactification with $h^{2,1}=0$

DeWolfe, Giryavets, Kachru, Taylor hep-th/0505160

- They study Landau-Ginzburg models that are dual to rigid Calabi-Yau manifolds

Type IIB Flux Compactifications

- Flux compactifications with $h^{1,1}=0$ where originally studied in 2006 and 2007

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- The authors were guided by trying to find the dual of a $\frac{T^{6}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}$ type IIA flux compactification with $h^{2,1}=0$

DeWolfe, Giryavets, Kachru, Taylor hep-th/0505160

- IIB H-flux in $W^{I I B}=\int\left(F_{3}-\tau H_{3}\right) \wedge \Omega$ becomes $H_{i j k} \rightarrow H_{i j k}, f_{j k}^{i}, Q_{k}^{i j}, R^{i j k}$ under mirror symmetry
\Rightarrow IIB setup contains DGKT but is more generic

Type IIB Flux Compactifications

- Focus on $1^{9} / \mathbb{Z}_{3}$ model, where \mathbb{Z}_{3} is a 'quantum symmetry' (not geometric and fixes Kähler moduli, $h^{1,1}=0$)

Becker, Becker, Vafa, Walcher hep-th/0611001

- Model is mirror dual of geometric $T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ with $h^{2,1}=0$

Type IIB Flux Compactifications

- Focus on $1^{9} / \mathbb{Z}_{3}$ model, where \mathbb{Z}_{3} is a 'quantum symmetry' (not geometric and fixes Kähler moduli, $h^{1,1}=0$)

Becker, Becker, Vafa, Walcher hep-th/0611001

- Model is mirror dual of geometric $T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ with $h^{2,1}=0$
- They work out/discuss how to include D3-branes, O3planes and fluxes that give Kähler and superpotential
- Find SUSY and AdS Minkowski vacua
- Discuss also 2^{6} model which allows for larger O 3 charge

Outline

- Review of flux compactifications in type IIA and IIB
- $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua from type IIB with $h^{1,1}=0$
- $4 \mathrm{~d} \mathcal{N}=1$ AdS vacua from type IIB with $h^{1,1}=0$
- Conclusion

The effective 4d superpotential

- Type IIB compactifications with $h^{1,1}=0$ one has

$$
W\left(U_{a}, \tau\right)=\int\left(H_{R R}-\tau H_{N S}\right) \wedge \Omega\left(U_{a}\right), \quad a=1, \ldots, h^{2,1}
$$

The effective 4d superpotential

- Type IIB compactifications with $h^{1,1}=0$ one has
$W\left(U_{a}, \tau\right)=\int\left(H_{R R}-\tau H_{N S}\right) \wedge \Omega\left(U_{a}\right), \quad a=1, \ldots, h^{2,1}$
- Restricting to the bulk moduli of the underlying torus and setting the three bulk complex structure moduli equal, $U=U_{1}=U_{2}=U_{3}$:

$$
\begin{aligned}
W & =W_{R R}(U)-\tau W_{N S}(U) \\
W_{R R}(U) & =f_{0}+3 f_{1} U+3 f^{1} U^{2}+f^{0} U^{3} \\
W_{N S}(U) & =h_{0}+3 h_{1} U+3 h^{1} U^{2}+h^{0} U^{3}
\end{aligned}
$$

The effective 4d superpotential

- Type IIB compactifications with $h^{1,1}=0$ one has
$W\left(U_{a}, \tau\right)=\int\left(H_{R R}-\tau H_{N S}\right) \wedge \Omega\left(U_{a}\right), \quad a=1, \ldots, h^{2,1}$
- Restricting to the bulk moduli of the underlying torus and setting the three bulk complex structure moduli equal, $U=U_{1}=U_{2}=U_{3}$:

$$
\begin{aligned}
W & =W_{R R}(U)-\tau W_{N S}(U) \\
W_{R R}(U) & =f_{0}+3 f_{1} U+3 f^{1} U^{2}+f^{0} U^{3} \\
W_{N S}(U) & =h_{0}+3 h_{1} U+3 h^{1} U^{2}+h^{0} U^{3}
\end{aligned}
$$

- Generically, $h^{2,1}=63$ complex structure moduli and τ
- Can solve the full LG model at the Fermat point

Supersymmetric Minkowski vacua

- Superpotential in $4 \mathrm{~d} \mathcal{N}=1$ not protected and can receive corrections \Rightarrow No Minkowski vacua for $\mathcal{N}<2$?

Supersymmetric Minkowski vacua

- Superpotential in $4 \mathrm{~d} \mathcal{N}=1$ not protected and can receive corrections \Rightarrow No Minkowski vacua for $\mathcal{N}<2$?
- These models have $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua due to powerful non-renormalization theorems!

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- Appear in simple and full fledged models where all moduli are taken into account
- Actually, there are infinite families of such vacua!

Supersymmetric Minkowski vacua

Solve $\partial W=W=0$:

$$
\begin{gathered}
f^{0}=-4, \quad f^{1}=0, \quad f_{1}=0, \quad f_{0}=4, \\
h^{0}=-3-h_{0}, \quad h^{1}=1, \quad h_{1}=-1 \\
U=e^{\frac{2 \pi i}{3}}, \quad \tau=\frac{\left(6+4 h_{0}\right)+i 2 \sqrt{3}}{3+h_{0}\left(3+h_{0}\right)}
\end{gathered}
$$

Tadpole: $N_{f l u x}=\int F_{3} \wedge H_{3}=12$ independent of $h_{0} \in \mathbb{Z}$

Supersymmetric Minkowski vacua

Solve $\partial W=W=0$:

$$
\begin{gathered}
f^{0}=-4, \quad f^{1}=0, \quad f_{1}=0, \quad f_{0}=4 \\
h^{0}=-3-h_{0}, \quad h^{1}=1, \quad h_{1}=-1 \\
U=e^{\frac{2 \pi i}{3}}, \quad \tau=\frac{\left(6+4 h_{0}\right)+i 2 \sqrt{3}}{3+h_{0}\left(3+h_{0}\right)}
\end{gathered}
$$

$$
\operatorname{Im}(U)=\frac{\sqrt{3}}{2}
$$

Never at large complex structure but no corrections

Supersymmetric Minkowski vacua

Solve $\partial W=W=0$:

$$
\begin{gathered}
f^{0}=-4, \quad f^{1}=0, \quad f_{1}=0, \quad f_{0}=4, \\
h^{0}=-3-h_{0}, \quad h^{1}=1, \quad h_{1}=-1 \\
U=e^{\frac{2 \pi i}{3}}, \quad \tau=\frac{\left(6+4 h_{0}\right)+i 2 \sqrt{3}}{3+h_{0}\left(3+h_{0}\right)}
\end{gathered}
$$

Never really weakly coupled but no string loop corrections to W !

Swampland Conjectures

- There are no 4d dS vacua in string theory

Danielsson, Van Riet 1804.01120 Obied, Ooguri, Spodyneiko, Vafa 1806.08362

- No 4d Minkowski vacua without massless scalars

Gautason, Van Hemelryck, Van Riet 1810.08518
Andriot, Horer, Marconnet 2204.05327

- There are no 4d AdS vacua in string theory

Lüst, Palti, Vafa 1906.05225
Buratti, Calderon, Mininno, Uranga 2003.09740

Supersymmetric Minkowski vacua

- ヨ4d $\mathcal{N}=1$ Minkowski with all bulk moduli stabilized

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818

Supersymmetric Minkowski vacua

- $\exists \mathrm{dd} \mathcal{N}=1$ Minkowski with all bulk moduli stabilized

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818

- However, $\partial W=W=0$ implies fluxes are ISD
- Tadpole $N_{\text {flux }}=\int F_{3} \wedge H_{3}=\frac{1}{2} N_{O 3}=\left\{\begin{array}{l}12 \text { for } 1^{9} \text { model } \\ 40 \text { for } 2^{6} \text { model }\end{array}\right.$

Supersymmetric Minkowski vacua

- $\exists 4 \mathrm{~d} \mathcal{N}=1$ Minkowski with all bulk moduli stabilized

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818

- However, $\partial W=W=0$ implies fluxes are ISD
- Tadpole $N_{\text {flux }}=\int F_{3} \wedge H_{3}=\frac{1}{2} N_{O 3}=\left\{\begin{array}{l}12 \text { for } 1^{9} \text { model } \\ 40 \text { for } 2^{6} \text { model }\end{array}\right.$
- Potential interesting connection to tadpole conjecture

Bena, Blåbäck, Graña, S. Lüst 2010.10519
Marchesano, Prieto, Wiesner 2105.09326
Plauschinn 2109.00029
Bena, Blåbäck, Graña, S. Lüst 2010.10519
S. Lüst 2109.05033

Gao, Hebecker, Schreyer Venken 2202.04087
Crinò, Quevedo, Schachner, Valandro 2204.13115
Graña, Grimm, van de Heisteeg, Herraez, Plauschinn 2204.05331

Preliminary results*

- Can calculate number of stabilized moduli for previous solutions

Becker, Gonzalo, Walcher, TW in progress

- For 1^{9} with tadpole 12 old Minkowski solution have ≈ 10 massive complex scalars $\ll h^{2,1}+1=64$

Preliminary results*

- Can calculate number of stabilized moduli for previous solutions

Becker, Gonzalo, Walcher, TW in progress

- For 1^{9} with tadpole 12 old Minkowski solution have ≈ 10 massive complex scalars $\ll h^{2,1}+1=64$
- Found new solutions with 32 massive complex scalars

Preliminary results*

- Can calculate number of stabilized moduli for previous solutions

Becker, Gonzalo, Walcher, TW in progress

- For 1^{9} with tadpole 12 old Minkowski solution have ≈ 10 massive complex scalars $\ll h^{2,1}+1=64$
- Found new solutions with 32 massive complex scalars
- For 2^{6} with tadpole 40 found solutions with 85 massive complex scalars $\approx h^{2,1}+1=91$
- So far no example where all scalars are massive

Stabilized vs massive fields

- Massive fields have non-vanishing Hessian matrix

$$
V(\phi)=\frac{1}{2} m^{2} \phi^{2} \Rightarrow m^{2}=\left.\partial_{\phi}^{2} V(\phi)\right|_{\phi=0}
$$

Stabilized vs massive fields

- Massive fields have non-vanishing Hessian matrix

$$
V(\phi)=\frac{1}{2} m^{2} \phi^{2} \Rightarrow m^{2}=\left.\partial_{\phi}^{2} V(\phi)\right|_{\phi=0}
$$

- However, massless fields can also be stable

$$
V(\phi)=\phi^{4} \quad \Rightarrow \quad m^{2}=\partial_{\phi}^{2} V(\phi)=\left.12 \phi^{2}\right|_{\phi=0}=0
$$

- Calculate ϕ^{4} terms to see whether all massless fields are stabilized

Becker, Gonzalo, Walcher, Wrase in progress

Outline

- Review of flux compactifications in type IIA and IIB
- $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua from type IIB with $h^{1,1}=0$
- $4 \mathrm{~d} \mathcal{N}=1$ AdS vacua from type IIB with $h^{1,1}=0$
- Conclusion

Non-renormalization theorems

- Let us first look at the superpotential W

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- In a type IIB model all α^{\prime} corrections for complex structure are contained in the Landau-Ginzburg

Non-renormalization theorems

- Let us first look at the superpotential W

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- In a type IIB model all α^{\prime} corrections for complex structure are contained in the Landau-Ginzburg
- W does not receive string loop correction (neither perturbative nor non-perturbative). Variety of reasons presented (analogue to geometric case)

Non-renormalization theorems

- Let us first look at the superpotential W

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- In a type IIB model all α^{\prime} corrections for complex structure are contained in the Landau-Ginzburg
- W does not receive string loop correction (neither perturbative nor non-perturbative). Variety of reasons presented (analogue to geometric case)
- No D3-brane instantons since $h^{1,1}=0$
- No D(-1)-brane instantons in decompactification limit consistent with recent results

Non-renormalization theorems

- The above no-go theorems do not apply to K

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- For SUSY AdS vacua we solve

$$
D_{i} W=\partial_{i} W+W \partial_{i} K=0
$$

so we need to understand corrections to K

Non-renormalization theorems

- The above no-go theorems do not apply to K

Becker, Becker, Vafa, Walcher hep-th/0611001
Becker, Becker, Walcher 0706.0514

- For SUSY AdS vacua we solve

$$
D_{i} W=\partial_{i} W+W \partial_{i} K=0
$$

so we need to understand corrections to K

- Corrections to $\partial_{i} K=K_{i}$ are Kähler transformation that do not change the equations $D_{i} W=0$
- However, for example masses could receive corrections

The effective 4d SUGRA action

- Type IIB compactifications with $h^{1,1}=0$ one has

$$
\begin{aligned}
K & =-4 \log (\tau-\bar{\tau})-\log \left(-i \int \Omega \wedge \bar{\Omega}\right) \\
W & =\int\left(H_{R R}-\tau H_{N S}\right) \wedge \Omega
\end{aligned}
$$

- The factor of 4 is a small volume correction and can be derived using mirror symmetry

Becker, Becker, Walcher 0706.0514

$$
\begin{aligned}
K^{I I A} & =-\log \left(e^{-4 D}\right)-\log \left(\text { vol }_{6}\right) \\
& =-\log \left(e^{-4 \phi}\left(\operatorname{vol}_{6}\right)^{2}\right)-\log \left(\text { vol }_{6}\right)
\end{aligned}
$$

The effective 4d SUGRA action

- Type IIB compactifications with $h^{1,1}=0$ one has

$$
\begin{aligned}
K & =-4 \log (\tau-\bar{\tau})-\log \left(-i \int \Omega \wedge \bar{\Omega}\right) \\
W & =\int\left(H_{R R}-\tau H_{N S}\right) \wedge \Omega
\end{aligned}
$$

- Due to the factor of 4 no ISD fluxes required Ishiguro, Otsuka 2104.15030

$$
D_{\tau} W=D_{U_{a}} W=0 \quad \not \approx \quad \int F_{3} \wedge H_{3} \geq 0
$$

- Tadpole: $N_{D 3}+\int H_{3} \wedge F_{3}=N_{O 3} / 2, \quad N_{D 3}=0,1,2,3, \ldots$

The effective 4d SUGRA action

- Restricting to the bulk moduli

$$
\begin{aligned}
K & =-4 \log (\tau-\bar{\tau})-3 \log [-i(U-\bar{U})] \\
W & =W_{R R}(U)-\tau W_{N S}(U) \\
W_{R R}(U) & =f_{0}+3 f_{1} U+3 f_{2} U^{2}+f_{3} U^{3} \\
W_{N S}(U) & =h_{0}+3 h_{1} U+3 h_{2} U^{2}+h_{3} U^{3}
\end{aligned}
$$

- Easy to find many infinite families of SUSY AdS vacua

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818

The effective 4d SUGRA action

- Restricting to the bulk moduli

$$
\begin{aligned}
K & =-4 \log (\tau-\bar{\tau})-3 \log [-i(U-\bar{U})] \\
W & =W_{R R}(U)-\tau W_{N S}(U) \\
W_{R R}(U) & =f_{0}+3 f_{1} U+3 f_{2} U^{2}+f_{3} U^{3} \\
W_{N S}(U) & =h_{0}+3 h_{1} U+3 h_{2} U^{2}+h_{3} U^{3}
\end{aligned}
$$

- Easy to find many infinite families of SUSY AdS vacua

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818

- Including families with $N_{D 3} \rightarrow \infty, \int H_{3} \wedge F_{3} \rightarrow-\infty$
- Gauge group $U\left(N_{D 3}\right)$ with arbitrary rank?
(similar to M-theory on $\operatorname{AdS}_{7} \times S^{4} / \mathbb{Z}_{k}$)

The effective 4d SUGRA action

- Restricting to the bulk moduli

$$
\begin{aligned}
K & =-4 \log (\tau-\bar{\tau})-3 \log [-i(U-\bar{U})] \\
W & =W_{R R}(U)-\tau W_{N S}(U) \\
W_{R R}(U) & =f_{0}+3 f_{1} U+3 f_{2} U^{2}+f_{3} U^{3} \\
W_{N S}(U) & =h_{0}+3 h_{1} U+3 h_{2} U^{2}+h_{3} U^{3}
\end{aligned}
$$

- Easy to find many infinite families of SUSY AdS vacua

Bardzell, Gonzalo, Rajaguru, Smith, TW 2203.15818

- Including families with $N_{D 3} \rightarrow \infty, \int H_{3} \wedge F_{3} \rightarrow-\infty$
- No scale separated AdS solutions except for DGKT dual (Integer conformal dimension only for DGKT dual)

Summary

- Type IIB with $h^{1,1}=0$: new class of string compactifications to check swampland conjectures
- Provide trustworthy result even at strong coupling
- Infinite families of $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua (stable?)
- Several new infinite families of AdS vacua with interesting properties

Summary

- Type IIB with $h^{1,1}=0$: new class of string compactifications to check swampland conjectures
- Provide trustworthy result even at strong coupling
- Infinite families of $4 \mathrm{~d} \mathcal{N}=1$ Minkowski vacua (stable?)
- Several new infinite families of AdS vacua with interesting properties

