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Swampland Conjectures

• Have not studied string theory in 
its fully generic form but usually 
only in certain regions: large 
volume, weak coupling, with 
supersymmetry, ….

• Try to understand larger parts of 
the string landscape

• Not easy  ⇒ incremental steps
swampland

landscape
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Type II Flux Compactifications

Type IIA
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Type II Flux Compactifications

Type IIA

All moduli stabilized:  ℎ2,1 = 0

Type IIB

All moduli stabilized:  ℎ1,1 = 0

• Type IIA and type IIB on 𝐶𝑌3 related by mirror symmetry

• Extends to spaces with ℎ2,1 = 0 that are dual to spaces with 
ℎ1,1 = 0

• ℎ1,1 = 0 seems to imply absence of an underlying geometry 
(which is fine for string theory)

• Actually, string frame volume is fixed by an orbifold to an 
𝑂(1) value and cannot fluctuate
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• Recently revisited in the swampland context
Ishiguro, Otsuka  2104.15030

• Given the plethora of recent swampland conjectures a 
further and closer look is warranted
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𝑇6

ℤ3×ℤ3
type IIA flux compactification with ℎ2,1 = 0

DeWolfe, Giryavets, Kachru, Taylor  hep-th/0505160

• IIB H-flux in 𝑊𝐼𝐼𝐵 = ∫ (𝐹3 − 𝜏𝐻3) ∧ Ω becomes           

𝐻𝑖𝑗𝑘 → 𝐻𝑖𝑗𝑘 , 𝑓𝑗𝑘
𝑖 , 𝑄𝑘

𝑖𝑗
, 𝑅𝑖𝑗𝑘 under mirror symmetry 

⇒ IIB setup contains DGKT but is more generic
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• Focus on 19/ℤ3 model, where ℤ 3 is a ‘quantum 
symmetry’ (not geometric and fixes Kähler moduli, 
ℎ1,1 = 0)
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• Focus on 19/ℤ3 model, where ℤ 3 is a ‘quantum 
symmetry’ (not geometric and fixes Kähler moduli, 
ℎ1,1 = 0)

Becker, Becker, Vafa, Walcher hep-th/0611001

• Model is mirror dual of geometric 𝑇6/ℤ3 × ℤ3 with 
ℎ2,1 = 0

• They work out/discuss how to include D3-branes, O3-
planes and fluxes that give Kähler and superpotential

• Find SUSY and AdS Minkowski vacua

• Discuss also 26 model which allows for larger O3 charge
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• Can solve the full LG model at the Fermat point
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• Superpotential in 4d 𝒩 = 1 not protected and can 
receive corrections  ⇒ No Minkowski vacua for 𝒩 < 2?

• These models have 4d 𝒩 = 1 Minkowski vacua due to 
powerful non-renormalization theorems!
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• Appear in simple and full fledged models where all 
moduli are taken into account

• Actually, there are infinite families of such vacua!
Bardzell, Gonzalo, Rajaguru, Smith, TW   2203.15818



Supersymmetric Minkowski vacua
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Supersymmetric Minkowski vacua

Solve 𝜕𝑊 = 𝑊 = 0:

𝑓0 = −4, 𝑓1 = 0, 𝑓1 = 0, 𝑓0 = 4,
ℎ0 = −3 − ℎ0, ℎ1 = 1, ℎ1 = −1

𝑈 = 𝑒
2𝜋𝑖
3 , 𝜏 =

6 + 4ℎ0 + 𝑖 2 3

3 + ℎ0 3 + ℎ0

Never really 
weakly coupled 

but no string loop 
corrections to 𝑊!
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• However, 𝜕𝑊 = 𝑊 = 0 implies fluxes are ISD

• Tadpole 𝑁𝑓𝑙𝑢𝑥 = ∫ 𝐹3 ∧ 𝐻3 =
1
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• Potential interesting connection to tadpole conjecture
Bena, Blåbäck, Graña, S. Lüst 2010.10519
Marchesano, Prieto, Wiesner  2105.09326

Plauschinn 2109.00029
Bena, Blåbäck, Graña, S. Lüst 2010.10519

S. Lüst  2109.05033
Gao, Hebecker, Schreyer Venken 2202.04087

Crinò, Quevedo, Schachner, Valandro 2204.13115
Graña, Grimm, van de Heisteeg, Herraez, Plauschinn  2204.05331
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Preliminary results*

• Can calculate number of stabilized moduli for previous 
solutions

Becker, Gonzalo, Walcher, TW    in progress

• For 19 with tadpole 12 old Minkowski solution have 

≈ 10 massive complex scalars ≪ ℎ2,1 + 1 = 64

• Found new solutions with 32 massive complex scalars

• For 26 with tadpole 40 found solutions with 

85 massive complex scalars ≈ ℎ2,1 + 1 = 91

• So far no example where all scalars are massive
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Stabilized vs massive fields

• Massive fields have non-vanishing Hessian matrix

𝑉 𝜙 =
1

2
𝑚2𝜙2 ⇒ 𝑚2 = 𝜕𝜙

2𝑉 𝜙 ቚ
𝜙=0

• However, massless fields can also be stable

𝑉 𝜙 = 𝜙4 ⇒ 𝑚2 = 𝜕𝜙
2𝑉 𝜙 = 12 𝜙2 ቚ

𝜙=0
= 0

• Calculate 𝜙4 terms to see whether all massless fields 
are stabilized

Becker, Gonzalo, Walcher, Wrase  in progress
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• In a type IIB model all 𝛼′ corrections for complex 
structure are contained in the Landau-Ginzburg

• 𝑊 does not receive string loop correction (neither 
perturbative nor non-perturbative). Variety of reasons 
presented (analogue to geometric case)

• No D3-brane instantons since ℎ1,1 = 0

• No D(-1)-brane instantons in decompactification limit 
consistent with recent results

Kim  2201.04634
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• For SUSY AdS vacua we solve 
𝐷𝑖𝑊 = 𝜕𝑖𝑊 +𝑊 𝜕𝑖𝐾 = 0

so we need to understand corrections to 𝐾

• Corrections to 𝜕𝑖𝐾 = 𝐾𝑖 are Kähler transformation that 
do not change the equations 𝐷𝑖𝑊 = 0

• However, for example masses could receive corrections



The effective 4d SUGRA action

• Type IIB compactifications with ℎ1,1 = 0 one has

𝐾 = −4 log 𝜏 − ҧ𝜏 − log(− 𝑖 ∫ Ω ∧ ഥΩ)
𝑊 = ∫ 𝐻𝑅𝑅 − 𝜏 𝐻𝑁𝑆 ∧ Ω

• The factor of 4 is a small volume correction and can be 
derived using mirror symmetry

Becker, Becker, Walcher 0706.0514

𝐾𝐼𝐼𝐴 = − log 𝑒−4𝐷 − log 𝑣𝑜𝑙6
= − log 𝑒−4𝜙 𝑣𝑜𝑙6

2 − log(𝑣𝑜𝑙6)



The effective 4d SUGRA action

• Type IIB compactifications with ℎ1,1 = 0 one has

𝐾 = −4 log 𝜏 − ҧ𝜏 − log(− 𝑖 ∫ Ω ∧ ഥΩ)
𝑊 = ∫ 𝐻𝑅𝑅 − 𝜏 𝐻𝑁𝑆 ∧ Ω

• Due to the factor of 4 no ISD fluxes required
Ishiguro, Otsuka  2104.15030

𝐷𝜏𝑊 = 𝐷𝑈𝑎𝑊 = 0 ⇒ ∫ 𝐹3 ∧ 𝐻3 ≥ 0

• Tadpole: 𝑁𝐷3 + ∫𝐻3 ∧ 𝐹3 = 𝑁𝑂3/2,     𝑁𝐷3 = 0,1,2,3, …
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• Including families with 𝑁𝐷3 → ∞, ∫ 𝐻3 ∧ 𝐹3 → −∞

• Gauge group 𝑈(𝑁𝐷3) with arbitrary rank? 

(similar to M-theory on 𝐴𝑑𝑆7 × 𝑆4/ℤ𝑘)
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• Including families with 𝑁𝐷3 → ∞, ∫ 𝐻3 ∧ 𝐹3 → −∞

• No scale separated AdS solutions except for DGKT dual

(Integer conformal dimension only for DGKT dual)
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